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Instructions to Students

Introduction

Physics is an experimental science. Advancements in physics throughout its history have come
about mainly driven by experiments. For you, the physics lab will be an opportunity to have
some fun with some hands-on experience with physics theories. Moreover, it will be an oppor-
tunity for you to develop and enhance your skills of experimental observation, data analysis
and proper scientific documentation which are always important in a career in science and
engineering. So please look forward to use your laboratory time for a gainful purpose.

This manual will provide the basic theoretical backgrounds and detail procedures of vari-
ous experiments that you will perform in the lab. Before that, here are some specific instruc-
tions for you to follow while carrying out the experiments. It also outlines the approach that
will be undertaken in conducting the lab. Please read carefully the followings.

Specific Instructions

1. You are expected to complete one experiement in each class. For that to happen, you will
have to come to the laboratory with certain initial preparation. The initial preparation
will involve a prior study of the basic theory of the experiement you are going to take up
as well as the procedure to perform it so as to have a rough idea of what to do. In addition,
it will also involve a partial preparation of the lab report in advance as mentioned later
in this section.

2. Youmust bring with you the following materials to the lab: This instruction manual, A4
size papers for writing the lab report, graph sheets if necessary, pen, pencil, measuring
scale, calculator and any other stationary items required. On the very first day of your lab
class, bring also a file cover/folder with your name, roll no., brance name etc. writen on
it clearly and submit it to the instructor. The folder will be used to store your laboratory
reports regularly at the end of the classes. The folder with your reports will be kept in
the laboratory and will be returned to you only after the course instructions are over.

3. The format of a lab report shall be as follows:

(a) The first sheet will contain your name, branch name, roll number, date and title of
the experiment. The subsequent sheets will contain the followings in that order.

(b) The objective of the experiment, apparatus needed, and a brief theory with working
formulas and figures or diagrams whenever necessary.

(c) Experimental observations. Data from experimental observations should be recorded
in proper tabular format with well documented headings for the columns. The data
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Instructions to Students

tables should be preceded by the least counts of the instruments used to take the
data and numerical value of any constant, if any, used in the table.

(d) Graphs whenever applicable.

(e) Relevant calculations, error analyses.

(f) Final results along with error estimates.

(g) Remarks if any.

(h) Please DO NOT write the procedure of experiement anywhere.

4. As part of the initial preparation mentioned earlier, you are required come to the lab
ready with the items 3(a) and 3(b) above already writen in your report sheets. This will
save valuable lab time and help you to complete the rest of the experiment within the
alloted time.

5. After the completion of your data recording, switch off any power suply etc. used and
put back the components of the apparatus in their proper places. Complete the rest of
the relevant calculations and hand over the final report sheets to the instructor before
leaving the lab.

6. Last but not the least - please handle the instruments with care and maintain utmost
discipline and decorum in the lab.

—
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Experiment 1

Study of Hall Effect

Objective

To study Hall effect and determine the Hall coefficient and hence the number density of ma-
jority charge carriers of a semiconductor sample.

Apparatus

A Hall effect experimental setup with the following components: electromagnet with power
supply, Hall probe, semiconductor sample, current supply with ammeter, voltmeter etc.

Theory

When an electrical current passes through a sample placed in a magnetic field, a voltage devel-
ops across the sample in a direction perpendicular to both the current and the magnetic field.
This is known as Hall effect.

The basic experimental setup for study of Hall effect is shown in Fig. 1. A rectangular
slab of a semiconducting sample with its width (w) along y-direction and thickness (d) along
z-direction is placed in a magnetic field of strength B directed along the z-direction. Now

Jx
d

VH

y

x

z

w

B

+ + + + + + +

− − − − − − −

Ey

Fig. 1: Hall effect experiment (for +ve charge carriers)

an electric current, IH is made to pass through the sample along its length by maintaining a
potential difference along x-direction. The corresponding current density is,

Jx =
IH
wd

(1)

Suppose that the charge carriers are positive, each having charge +q, and are moving along
+x direction with velocity ~v. Then the Lorentz force experienced by the carriers due to the
magnetic field is,

~FB = q
(
~v × ~B

)
= −(qvB)ŷ (2)
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Experiment 1: Study of Hall Effect

This force ~FB along −ŷ direction deflects the positive charge carriers towards the bottom surface
of the sample. This makes the bottom surface positively charged while leaving the top surface
negatively charged. This accumulation of charges near the bottom and top surfaces of the
sample leads to the development of a transverse electric field ~E = Ey ŷ along the y-direction.

Force due to this electric field, q~E opposed the Lorentz force ~FB and prevents further charge
accumulation. In the steady state condition, these two forces balance out each other and we
get,

qEy = qvB (3)

Now we define a quantity called Hall coefficient RH , as the ratio of the electric field Ey to the
current density Jx multiplied by magnetic field B, that is

RH =
Ey
JxB

=
1
nq

(4)

where we have used Eq. (3) and the fact that Jx = nqv, n being the number density (m−3) of
charge carriers.

In order to determine RH , we proceed as follows. Writing v = Jx/nq and multiplying both
sides of Eq. (3) by wd, we get

Eywd =
JxwdB
nq

(5)

But Ew = VH , the voltage across the top and bottom surfaces called the Hall voltage and Jxwd =
IH . This gives,

VH =
(RHB
d

)
IH (6)

Therefore, if we measure the Hall voltage VH against Hall current IH for a fixed magnetic field
B and plot VH versus IH , the curve will be a straight line with the slope m being,

m =
RHB
d

(7)

The Hall coefficient RH can be calculated from the value of this slope, m if the thickness d of
the sample is known. Once RH is determined, the carrier density n can be calculated using
Eq. (4).

Now assume the situation where the charge carriers are negative with q = −e. In that case,
for current direction along +x, the charges will be moving with velocity ~v = −vx̂. The Lorentz
force, ~FB = q

(
~v × ~B

)
= −(evB)ŷ will still be along negative y direction as before. However this

time, the bottom surface acquires negative polarity and consequently, the sign of the Hall
voltage VH will be opposite to what was observed in case of positive charge. Thus for given
directions of the Hall current and the magnetic field, we can determine the type of charge
carriers (whether +ve or -ve) by looking at the sign of the Hall voltage VH .

Experimental setup

The experimental setup is complete unit (Fig. 2) consisting of the followings - an electromag-
net, constant current power supply, a Gauss and Tesla meter, a Hall current & voltage measure-
ment unit and the sample connected with contact leads for passing Hall current and measuring
Hall voltage.
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Fig. 2: Hall effect measurement unit

Procedure

1. Keep the poles of the electromagnet apart by a distance of around 20 mm.

2. Connect the electromagnet with the constant current power supply and switch on power.

3. Set a suitable magnetic field (< 3 KGauss) by adjusting the magnetizing current. You can
measure the magnetic field using the Hall probe. You will have to keep the magnetic field
constant at, say B = 1 KG and B = 2 KG for two sets of measurements.

4. Insert the sample between the pole pieces of the electromagnet.

5. For the first set of measurement, set the magnetic field (+B) first at, say B = 1 KG and
keep it constant.

6. Switch on the Hall current IH through the sample and adjust it at around 5 mA. Measure
the hall voltage VH .

7. Increase the Hall current IH at suitable steps (up to maximum 20 mA) and record VH
against each IH .

8. Now reverse the direction of the magnetic field (−B) keeping its magnitude constant at
the same value (1 KG in this case).

9. Record VH against IH for the same set values of IH as taken for +B.

10. Now for each current IH , calculate the average of two values of VH (+B) and VH (−B). This
cancels out offset voltage due to any misalignment in the sample contacts.

11. Plot a curve of VH versus IH and find out its slope.

12. Calculate the Hall coefficient, RH from the slope.

13. For the second set of measurement, increase the magnetic field (+B) to say B = 2 KG and
keep it constant.

14. Repeat steps 6-12.

15. Finally calculate the average RH and determine the number density n using Eq. (4).
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Experiment 1: Study of Hall Effect

Observations

Thickness of the sample, d = · · ·

Table 1: Hall voltage VH as a function of Hall current IH , for B = 1 KG

Sl No.
IH

(in mA)
VH1(+B)
(in mV)

VH2(−B)
(in mV)

Mean
VH = |VH1−VH2|

2

IH
(in A)

Mean VH
(in V)

1 5
2 7
3 9
...

8 . . .
...

Table 2: Hall voltage VH as a function of Hall current IH , for B = 2 KG

Sl No.
IH

(in mA)
VH1(+B)
(in mV)

VH2(−B)
(in mV)

Mean
VH = |VH1−VH2|

2

IH
(in A)

Mean VH
(in V)

1 5
2 7
3 9
...

8 . . .
...

Graphs:

Plot two graphs of VH versus IH for the above two data tables and find its slopes.

Calculations:

From the slopes of the above two IH −VH curves, calculate the Hall coefficient RH and find the
average of the two values obtained. Calculate the number density of majority charge carriers
using Eq. (4) and assuming that q is equal to the charge of an electron.

Result:

Hall coefficient of the given sample, RH = · · · .
Number density of majority charge carriers, n = · · · (m−3).

Remark:

—
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Experiment 2

Determination of Planck’s constant

Objective

To determine the value of Planck’s constant using photoelectric effect.

Apparatus

Planck’s constant experimental unit consisting of a vacuum photo tube, light source, color
filters, regulated voltage power supply, voltmeter, ammeter etc.

Theory

The phenomenon of emission of electrons from the surface of a material when light falls on it,
is known as the photoelectric effect. The emitted electrons are called photoelectrons. A typical
experimental setup for observing the photoelectric effect is shown in Fig. 1. Light falls on a
target metal plate T enclosed in a vacuum tube and as a result electrons are ejected from the

µA

Light

Electrons+ −T C

V

Fig. 1: Photoelectric effect experiment

surface of the plate. When the ejected electrons reach the collector electrode C placed opposite
to T, an electric current, called photocurrent flows through the circuit. This photocurrent can
be measured by an ammeter connected to the circuit. The kinetic energies of the emitted
electrons can be estimated by applying a negative potential to the collector C and tuning the
potential such that it is just enough to prevent the electrons from reaching the collector. This
negative potential, V0 to C at which the photocurrent becomes zero, is called the stopping
potential. Obviously,

eV0 = Kmax (1)
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Experiment 2: Planck’s constant using photoelectric effect

where e is the electronic charge and Kmax is the maximum kinetic energy of the emitted elec-
trons. The photoelectric effect was first explained by Einstein on the basis of quantum theory
of light. According to it, light, i.e. electromagnetic radiation consists of discrete energy packets
or energy quanta. Each energy packet behaves as particle and is called photon. The energy of
a photon is given by,

E = hf (2)

where h is called Planck’s constant and f is the frequency of radiation. When the photons falls
on metal surface, an electron can absorb the energy of a photon and acquire enough energy
to escape the surface potential barrier φ (also called work function). The maximum kinetic
energy with which the electron can eject out, according to the principle of energy conservation,
is given by

Kmax = hf −φ (3)

Since Kmax = eV0, the relationship can also be written as

eV0 = hf −φ (4)

The above equation shows that a graph of V0 versus f will be a straight line with the slope
being equal to h/e. Thus, if V0 is measured for different frequency f (colors) of incident light
and V0 is plotted as a function of f , the value of Planck’s constant h can be determined from
the slope of the line.

Experimental setup

The Planck’s constant measurement unit is shown in Fig. 2. It consists of a light source, a photo
vacuum tube, DC voltmeter, DC ammeter and connecting ports. Also supplied along with the
unit are four filters of different colors, e.g. violet, blue 1, blue 2 and yellow. The circuit diagram
for the connections is displayed in the panel.

Fig. 2: Planck’s constant measurement unit
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Procedure

1. Take the Planck’s constant setup & fix the photo vacuum tube at particular position.

2. Complete the circuit connections as shown in the diagram in the panel of the unit.

3. Set the range of the DC voltmeter at 200 mV and the ammeter at 2 µA.

4. Connect the mains cord and switch on the power supply and light source. Now you can
observe some value of current on ammeter.

5. First insert the ‘red’ color filter in front of photo vacuum tube.

6. If the observed current is too low, then slide the photo vacuum tube towards light source
till you get some appreciable current. Fix the photo tube at this distance (position 1).

7. Switch on the DC voltage source.

8. Now vary the DC voltage slowly by variable resistance pot and see the value of current.
It should decrease as the voltage is increased.

9. When the current becomes zero, note the value of applied voltage by DC voltmeter. This
is the stopping potential, V0 for the given color.

10. Switch off the DC voltage source.

11. Repeat steps 7-10 for the other color filters, e.g. orange, yellow, green and blue respec-
tively, keeping the position of the photo vacuum tube fixed.

12. Tabulate all the readings as indicated in Table 1.

13. Now reduce the distance between the light source and the photo vacuum tube to approx-
imately half of what was taken in the above set of readings. This is position 2 of the photo
tube.

14. Repeat steps 7-12 with the same set of color filters for position 2 of the photo tube.

15. The stopping potential, V0 should be same for both the positions of the photo tube. Find
the mean V0 from the two values obtained for position 1 & 2 (see Table 1).

16. Plot a graph of V0 versus f (in 1012 Hz).

17. Find the slope of the best straight line fit and from the slope, calculate h.

Observations

Velocity of ligh, c = 3× 108 ms−1.
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Experiment 2: Planck’s constant using photoelectric effect

Table 1: Determination of V0 as a function of frequency, f .

Color of filter
Wavelength, λ

(×10−9 m)

Frequency,
f = c/λ

(×1012 Hz)

Stopping potential, V0
(in V)

with the
photo tube in

position 1

with the
photo tube in

position 2
Mean V0

Red 700
Orange 620
Yellow 580
Green 530
Blue 470

Graph:

Plot a graph of V0 versus f from date in Table 1.

Calculation:

Value of e = 1.6× 10−19 C.

Slope of the V0-f graph, he = · · ·

h = · · ·

Result:

Value of Planck’s constant from the experiment, h = · · · .

Remark:

—
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Experiment 3

Electrical resistivity and band gap of semiconductors

Objective

To determine the electrical resistivity of a semiconductor as a function of temperature by four
probe method and determine the band gap of the semiconductor.

Apparatus

Four probe measurement unit with oven, semiconducting sample, current source, voltmeter,
ammeter etc.

Theory

By Ohm’s law, the electric field intensity, ~E at a point in a material is proportional to the
current density, ~J that it induces at that point. The proportionality constant is called electrical
resistivity, ρ of the material. That is,

~E = ρ~J (1)

For a sample with a long wire like geometry with uniform cross-sectional area, ρ can be mea-
sured by simply passing a known current through the sample and measuring the voltage drop
across it. This simple method has however several disadvantages. For example, it can not be
applied to a sample with non-regular shapes, there could be errors due to contact resistance
of the measuring leads, soldering the contact leads itself can be difficult for some samples etc.
Also in case of semiconductors, the soldering process may results in injection of impurities
into the sample thereby affecting its intrinsic electrical resistivity.

1 42 3

I I−+
V

Fig. 1: Four probe experiment arrangement

Some of the above difficulties can be overcome by employing a technique called four probe
method. Consider a flat semiconducting sample. In the four probe method, four pointed,
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Experiment 3: Electrical resistivity and band gap of semiconductors

collinear, equally spaced probes are placed in pressure contact with the plane surface of the
sample (Fig. 1). A current is injected into the sample through the outer two probes (1 & 4).
The resulting electric potential distribution is measured via the two inner probes (2 & 3). The
voltage drop, V across probes 2 & 3 for a current I through probes 1 & 4, is given by a simple
expression, if certain conditions are satisfied. The surface of the sample is assumed to be flat
with no surface leakage. The diameter of the contact between each probe and the sample
should be small compared to the distance between the probes. Also the thickness, d of the
sample is assumed to be much smaller than the distance, s between two probes. Under such
conditions, it can be shown that,

V =
I
πd
ρ ln2 (2)

Therefore resistivity of the sample is,

ρ =
Vπd
I ln2

(3)

Now the temperature variation of resistivity of a semiconductor is given by,

ρ = ρ0 exp
(
Eg
kT

)
(4)

where Eg is the band gap of the semiconductor and k is Boltzmann’s constant. Taking logarithm
of both sides of the above equation,

lnρ =
Eg

103 × k

(
103

T

)
+ lnρ0 (5)

The factor 103 above is inserted for convenience. Thus a plot of ‘lnρ’ as a function of 103

T is a
straight line with the slope being equal to,

slope =
Eg

103 × k
(6)

Therefore, by determining the resistivity, ρ of the sample at various temperatures T , we can
plot a graph of ‘lnρ’ versus 103

T , and find the band gap from the slope of the graph.

Experimental setup

Fig. 2: Band gap measurement unit

The experimental setup (Fig. 2) consists of a measuring unit with current source, an LCD
panel for reading current, voltage and temperature. A semiconductor sample connected with
the four probe arrangement can be placed in an oven which can be heated by passing electrical
current through it. The current source provides the probe current through the sample as well
as the heating current to the oven.

14



Procedure

1. Connect the band gap measurement unit to mains.

2. The sample crystal is attached with the probe arrangement. Place it in the oven.

3. Connect four probe (eight pin connector) to the given eight pin socket of measurement
unit.

4. Connect the heater terminals (three pin socket) of the oven to the measurement unit.

5. Set the oven toggle switch at off position and current adjustment at the minimum.

6. At starting, current & voltage will be zero. The LCD display will show the current and
the voltage along with the oven temperature.

7. Set some suitable value of low current to the probe, say 5 mA. Keep this current constant
throughout the experiment.

8. Note down the voltage (between probes 2 & 3) and the temperature of the oven from the
display (Table 1).

9. Switch on the oven current supply. Now temperature will increase slowly.

10. Record the value of voltage corresponding to a fixed interval of temperature rise, say 5◦C.

11. Take at least 8 readings for different values of temperatures.

12. Calculate the experimental resistivity using Eq. (3).

13. Express resistivity in units of Ohm-cm and temperature in Kelvin (K).

14. Plot lnρ versus 103/T . Find the best linear fit to the points (choose only the linear portion
of the curve).

15. From the slope of the graph, calculate the band gap, Eg using Eq. (6).

Observations

Material of the given semiconductor sample = Germanium (Ge).

Thickness of the sample, d = 0.23 mm.

Distance between the probes, s = 2.0 mm.

Value of Boltzmann’s constant, k = 8.617× 10−5 eV/K.
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Experiment 3: Electrical resistivity and band gap of semiconductors

Set constant current through the sample, I = · · · .

Table 1: Resistivity ρ as a function of temperature T

Sl No.
Temperature

(in ◦C)

Temperature,
T

(in ◦K)

Voltage, V
(in V)

Resistivity,
ρ

(in Ohm-cm)

103

T
lnρ

1
2
3
...

8 . . .
...

Graph:

Plot a graphs of lnρ versus 103/T . Find the best linear fit to the points.

Calculations:

From the slope of the lnρ-103/T curve, calculate the band gap, Eg using Eq. (6).

Result:

Band gap of the given semiconductor sample is Eg = · · · .

Remark:

—
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Experiment 4

Verification of Stefan-Boltzmann Law

Objective

To verify Stefan-Boltzmann law of thermal radiation by electrical method.

Apparatus

Complete unit of Stefan’s law experimental setup consisting of an electrical circuit (Fig. 1) con-
taining elements such as an electrical bulb with tungsten filament, voltage source, voltmeter,
variable resistance etc.

Theory

The StefanBoltzmann law states that the energy radiated by a black body per second per unit
surface area is given by,

Prad = σT 4 (W/m2) (1)

where T is the absolute temperature of the body and σ is called the Stefan-Boltzmann constant.
If the body if not ‘perfectly black’, then the relationship is given by,

Prad = σεT 4 (W/m2) (2)

where ε is called emissivity of the body (ε < 1).
Now consider a tungsten filament in an electric bulb being heated by passing electrical

current through it. Let T be the absolute temperature of the filament and Ts be that of the
surroundings. The filament emits thermal radiation due to its own temperature as well as
absorbs some from the surroundings. The net rate of heat loss by the filament due to thermal
radiation is,

E = Aσε(T γ − T γs ) = C(T γ − T γs ) (3)

where A is the surface area of the filament, C = Aσε and the index γ = 4. If Ts � T , then we
can safely neglect the second term and write,

E = CT γ (4)

The above energy loss by the filament due to radiation can be equated with the power dis-
sipated by the electrical source in the filament resistance under the following circumstances.
If the bulb is completely evacuated, there is no loss of heat by convection. Secondly, since the
filament is in contact with a bad thermal conductor at the base of the bulb, the heat lost by con-
duction is small. Moreover the conduction heat depends linearly upon the temperature and
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Experiment 4: Verification of Stefan-Boltzmann Law

hence at very high temperature it will be much smaller than the radiated heat which goes as
the fourth power of temperature. Therefore we can assume that the electrical power dissipated
in the filament is lost completely in the form of thermal radiation and hence,

E = P = V I (5)

Where P is the electrical power dissipated by the voltage source and is given by the voltage, V
multiplied by the electric current I . Eq. (5) can be used to estimate the energy radiated by the
filament. Thus we can study the Stefan-Boltzmann law by measuring the power radiated as a
function of temperature, if we can estimate the temperature of the filament.

The filament temperature can be estimated from its electrical resistance, R as follows. The
relationship between the resistance and temperature of a tungsten filament can be expressed
by the following empirical formula,

Rt = R0(1 +αt + βt2) (6)

where t is the temperature in ◦C. Rt and R0 are the resistances at temperatures t ◦C and 0 ◦C,
respectively. The temperature coefficients α and β for tungsten are given by,

α = 5.21× 10−3 ◦C−1 and β = 7.2× 10−7 ◦C−2 (7)

In order to determine R0, we use the known fact that the temperature of a tungsten filament
when it just starts glowing is tg ∼ 527 ◦C. Let Rg be its corresponding resistance. Using the
numerical values of this temperature tg and the constants α, β in Eq. (6), we get

R0 =
Rg

3.95
(8)

Rg is determined by noting the voltage Vg and the current Ig at the glowing point, Rg = Vg /Ig .
Now we can calculate the ratio Rt/R0 and solve Eq. (6) for t in terms of Rt/R0, to get

t =
−α +

√
α2 − 4β(1−Rt/R0)

2β
(9)

The other solution is discarded because it will give rise to a negative t whereas Eq. (6) is valid
for only t > 0 ◦C. Thus once the value of Rt/R0 is determined, we can estimate the temperature,
t ◦C of the filament using Eq. (9). The corresponding absolute temperature is readily obtained
by,

T = t + 273 (◦K) (10)

Now we can verify the Stefan-Boltzmann law as follows. Taking logarithm of both sides of
Eq. (4), we get

lnE = γ lnT +C′, C′ = lnC = constant (11)

Therefore a graph of the quantity lnE as a function lnT is a straight line with the slope being γ .
By estimating E as a function of T for a number of different values of T using means described
above, we can plot the above graph and find its slope. The graph should be a straight line and
the slope should be γ = 4.
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Fig. 1: Circuit diagram Fig. 2: Stefan’s law trainer

Experimental setup

The experimental setup is a complete unit consisting of an electrical circuit containing ele-
ments such as an electrical bulb with tungsten filament, voltage source, voltmeter, variable
resistance etc. (Fig. 2).

Procedure

I. To find the resistance of the bulb filament at 0 ◦C

1. Connect the main cords to the mains.

2. Connect the circuit as shown in Fig. 1 through patch cords.

3. Switch on the unit.

4. Increase the DC voltage with the help of the variable resistance till the bulb beings to
glow (i.e. the filament appears faint red).

5. Note the readings of Vg and Ig , i.e. the voltage and current at the time when the filament
just begins to glow.

6. Calculate Rg = Vg /Ig .

7. Then calculate the resistance R0 of the filament at 0 ◦C by using Eq. (8).

II. To find the radiant power, E emitted by the filament as a function of
temperature, T and verify Stefan-Boltzmann law

1. Starting again from a lower voltage, increase the DC voltage gradually till the bulb just
begins to glow.

2. Note down the reading of current (in mA) corresponding to the given voltage (in volt)
from the given ammeter and voltmeter.

3. Now increasing the voltage further, note down the readings of current at different values
of voltages.

4. Tabulate all readings in the given observation table.
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Experiment 4: Verification of Stefan-Boltzmann Law

5. Calculate Rt = V /I for different voltages i.e., for different temperatures t.

6. Calculate Rt/R0 for all values of Rt and then determine temperature T of the filament
using Eq. (9) and (10).

7. Calculate the energy radiated/sec (E) by the filament at each temperature by using Eq. (5).

8. Finally plot a graph between lnE versus lnT . Find its slope γ and verify whether it
satisfies the Stefan-Boltzmann law.

Observations

Determination of R0, the resistance of the filament at 0 ◦C

Voltage across the filament at the glowing point, Vg = · · ·

Current through the filament at the glowing point, Ig = · · ·

Rg =
Vg
Ig

= · · · (inΩ)

R0 =
Rg

3.95 = · · · (inΩ)

Table 1: Determination of power, E radiated by the filament as a function of
temperature, T

Sl No.
Voltage,
V

(in Volt)

Current,
I

(in mA)

I
(in A)

Res.,
Rt =
V /I

(inΩ)

Rt/R0

Temp.,
t

(in ◦C)

Temp.,
T

(in ◦K)

Radiated
Power,
E = V I
(in W)

ln(T ) ln(E)

1
2
3
...

10
...

Graph:

Plot a graph of lnE versus lnT and find out its slope, γ .

Result:

Remark:

—
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Experiment 5

Post office box

Objective

To determine the value of an unknown resistance using Post Office box.

Apparatus

A Post Office box unit consisting of a Wheatstone bridge with variables resistances, galvanome-
ter, voltage source, connecting wires etc.

Theory

A post office (PO) box operates on the same principle as Wheatstone’s bridge which consists
of four resistances R1, R2, R3 and R4 that are connected to each other as shown in the circuit
diagram in Fig. 1. In this circuit, E is a voltage source, G is a galvanometer and K1 and K2 are
two keys. If the values of the resistances are adjusted so that no current flows through the gal-
vanometer (balance condition), then the resistances R1, R2, R3 and R4 satisfy the relationship,

R1

R2
=
R3

R4
(1)

A PO box is a compact form of the Wheatstone bridge where the resistances with bride arms

Fig. 1: Wheatstone’s bridge

are inbuilt in a single unit and can be varied conveniently. Two of its arms have resistances
which can be set to be at values 0Ω, 10Ω, 100Ω and 1000Ω alternately. These two arms are
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Experiment 5: Unknown resistance by Post office box

used establish the ratio between the two sides of the bridge and are called ratio arms. A third
bride arm is connected to a variable resistance which can be given a value from 0 to about 10
kΩ in convenient steps. The fourth arm can be connected to an unknown resistance whose
value needs to be determined. If R4 = Rx is the unknown resistance in the fourth arm and R1,
R2, R3 are the other three resistances when the Wheatstone bride is in balanced condition, then
from Eq. (1) we get,

Rx =
R2

R1
R3 (2)

Experimental setup

The PO box experimental unit is as shown in Fig. 2. It has a DC voltage source, a galvanometer,

Fig. 2: PO Box

Wheatstone bride arms with resistances R1, R2, R3 and Rx. R1 and R2 are the ratio arms each
of which can be set at 0Ω, 10Ω, 100Ω and 1000Ω. R3 is connected at a variable resistance
which consists of six resistances in series. These six resistances are identified by the six dial
knobs near the arm R3. Each of these six resistances can be varied with the help of the knobs
and given values as indicated in the panels. The total resistance R3 is the series combination of
all these six individual resistances. The arm Rx can be connected to a variable potentiometer
resistor which acts as an unknown resistance.

Procedure

1. Connect the -ve terminal of the DC voltage to ‘I’ terminal and the +ve terminal to ‘J’
terminal of the bridge (Fig. 2).

2. Connect Galvanometer’s +ve and -ve terminals to M and N terminals respectively.

3. Connect K & L terminals of variable resistance to E & G (R3) terminals of bridge.

4. Connect O & P terminals of unknown resistance to H & F (Rx) terminals of bridge.
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5. Set all rotaries at 0Ω.

6. Keep the key K1 in ‘Off’ position.

7. Switch ‘On’ power.

8. Set the resistance Rx at an some value (preferably below 1 kΩ) by rotating its dial Knob.

9. Then set resistances R1 and R2 at 10Ω.

10. Switch on the key K1 and observe the deflection on galvanometer.

11. Adjust the value of R3 in steps of 0.1Ω, 1Ω, 10Ω, 100Ω, 1000Ω, 10kΩ as per the require-
ment beginning from zero, till the null point is obtained in the galvanometer.

12. Note down the value of R3 in the given observation table.

13. Change the ratio R1/R2 to 1/10 by setting R1 = 10Ω and R2 = 100Ω. Repeat steps 11-12.

14. Change the ratio R1/R2 to 1/100 by setting R1 = 10Ω and R2 = 1000Ω. Repeat steps
11-12.

15. Change the ratio R1/R2 to 10 by setting R1 = 100Ω and R2 = 10Ω. Repeat steps 11-12.

16. Change the ratio R1/R2 to 100 by setting R1 = 1000Ω and R2 = 10Ω. Repeat steps 11-12.

17. For each of ratios R1/R2, calculate Rx using Eq. (2).

18. Find the mean Rx from the above values.

19. Determine the theoretical value of Rx with the help of dial knob as follows. Here the
dial knob can rotates 10 times corresponding to 0 to 10 numbers, it is said to be main
scale reading. A unit main scale reading corresponds to 1000Ω. Its each rotation has 50
divisions and is said to be circular scale reading (least count = 10Ω). For example, if there
are 5 rotations by main scale it means the resistance on main scale is 5 × 5000Ω. If the
circular scale is at 30, it means the additional resistance on the circular scale is 30×10Ω.
And the value of Rx is 5000Ω+ 300Ω = 5300Ω.

20. Compare the the theoretical value of Rx with the experimentally obtained value.

Observations

Table 1: Determination of Rx for different values of the ratio R1/R2

Sl No.
R1
(Ω)

R2
(Ω)

R3
(Ω) Rx = R2

R1
×R3

(Ω)×0.1 ×1.0 ×10 ×100 ×1000 ×10 k Total (R3)
1 10 10
2 10 100
3 10 1000
4 100 10
5 1000 10
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Experiment 5: Unknown resistance by Post office box

For determination of theoretical value of Rx:

Main scale reading of the dial knob, m = · · · .

Circular scale reading of the dial knob, c = · · · .

Theoretical Rx = (m× 1000 + c × 10)Ω = . . .Ω.

Calculations:

1. Calculate the mean experimental value of Rx from Table 1.

2. Calculate the theoretical value of Rx.

3. Calculate the percentage deviation of the experimental value from its theoretical value.

Result:

Value of unknown resistance, Rx = · · ·
Its theoretical value is = · · ·
The experimental value is deviated by . . .% from the theoretical value.

Remark:

—
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Experiment 6

Carey Foster bridge

Objective

To determine the resistance per unit length of a Carey Foster bride wire and hence determine
the value of an unknown low resistance.

Apparatus

Carey Foster bridge, galvanometer, two equal resistances (10Ω each), voltage source, connect-
ing wires etc.

Theory

The Carey Foster bridge is an electrical circuit that can be used to measure very low resistances.
It works on the same principle as Wheatstone’s bridge, which consists of four resistances R1,
R2, R3 and R4 that are connected to each other as shown in the circuit diagram in Fig. 1. In this
circuit, E is a voltage source, G is a galvanometer and K1 and K2 are two keys. If the values
of the resistances are adjusted so that no current flows through the galvanometer (balance
condition), then the resistances R1, R2, R3 and R4 satisfy the relationship,

R1

R2
=
R3

R4
(1)

In a meter bridge, two of the resistors, say R3 and R4 are replaced by a resistance wire of

Fig. 1: Wheatstone’s bridge Fig. 2: Carey Foster bridge circuit diagram

one meter length and uniform cross sectional area fixed on a meter scale. Point D is a sliding
contact that can be moved along the wire, thus varying the magnitudes of R3 and R4. The
Carey Foster bridge is a modified form of the meter bride in which the effective length of the
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Experiment 6: Unknown low resistance by Carey Foster bridge

wire is considerably increased by connecting a resistance in series with each end of the wire.
This increases accuracy of the bridge.

The circuit diagram for the Carey Foster bridge is shown in Fig. 2. Two standard low resis-
tances, P and Q, of 10 Ω each are connected in the inner gaps 2 and 3. A known resistance,
i.e., a fractional resistance box X and the unknown resistance Y whose resistance is to be deter-
mined are connected in the outer gaps 1 and 4, respectively. A one meter long resistance wire
of uniform area of cross section is soldered to the ends of two copper strips. Since the wire
has uniform cross-sectional area, the resistance per unit length is the same along the wire. A
galvanometer G is connected between terminal B and the jockey D, which is in sliding contact
that with the bridge wire. A voltage source is connected between terminals A and C.

The four points A, B, C and D in Fig. 2 exactly corresponds to the similarly labeled points in
the Wheatstone’s bridge circuit in Fig. 1. Therefore if the balance point is located at a distance
l1 from E, then we get

P
Q

=
X +α + l1ρ

Y + β + (100− l1)ρ
(2)

where ρ is the resistance per unit length of the wire, and α and β are the resistances due to end
corrections at the left and right ends. If now the positions of X and Y are interchanged and the
balance point is found at a distance l2 from E, then

P
Q

=
Y +α + l2ρ

X + β + (100− l2)ρ
(3)

From Eq. (2) and (3), we obtain

X +α + l1ρ
Y + β + (100− l1)ρ

=
Y +α + l2ρ

X + β + (100− l2)ρ
(4)

Adding 1 on both sides and simplifying,

X +Y +α + β + 100ρ
Y + β + (100− l1)ρ

=
X +Y +α + β + 100ρ
X + β + (100− l2)ρ

(5)

which gives,

Y + β + (100− l1)ρ = X + β + (100− l2)ρ
or, Y = X − (l2 − l1)ρ (6)

Thus once we know l1, l2, ρ and X then the unknown resistance Y can be determined using
Eq. (6). In order to determine ρ, put Y = 0 in Eq. (6) so as to get,

ρ =
X

l2 − l1
(7)

Thus ρ can be determined by short circuiting Y and measuring l1 and l2.

Procedure

I. To find the resistance per unit length of the wire, ρ

1. Make the circuit connections as shown in Fig. 2. Make sure that all connections are tight.
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2. Connect the given resistances P and Q (10 Ω each) in gaps 2 and 3. In this part, X is a
fractional resistance box and Y is a short circuit (zero resistance).

3. Switch on power voltage source so that current flows through the circuit.

4. First set the resistance X at zero and see if the galvanometer shows opposite deflections
when the jockey is pressed at the two ends of the wire. Also check whether the null point
is located around the middle of the bridge wire. If it is so, then the connections are likely
correct.

5. Now set a small resistance in X, say X = 0.1Ω.

6. Locate the balance point. Record the distance of the balance point from the left end
(point E) of the wire as length l1.

7. Reverse the direction of current flow by interchanging the connections to the voltage
source and again record the balance point l1 for the reverse current. Take average of l1
for direct and reverse current (see Table 1) in order to eliminate the effect of any thermo
emf.

8. Increase resistance X in steps of 0.1Ω and repeat steps 6-7 each time.

9. Interchange the positions of X and the zero resistance Y and repeat steps 6-7 for the same
set of resistance values for X. The corresponding balance point distance measured from
the same end of the bride wire should be recorded as l2 in the data table.

II. To find an unknown low resistance Y

1. Remove the short circuit and set the resistance Y at a small value as unknown resistance.

2. Repeat the entire sequence of steps 5-9 in part I of the procedure and fill up Table 2.

Observations

Table 1: Determination of ρ of the Carey Foster bridge wire (with Y = 0)

Sl No.
X

(Ω)

Position of balance point with Y (= 0) in the
l2 − l1
(cm)

ρ = X/(l2 − l1)
(Ωcm−1)

right gap, l1 (cm) left gap, l2 (cm)
direct

current
reverse
current

mean
l1

direct
current

reverse
current

mean
l2

1 0.1
2 0.2
3 0.3
...

8 . . .
...
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Experiment 6: Unknown low resistance by Carey Foster bridge

Table 2: Determination of the unknown low resistance, Y

Sl No.
X

(Ω)

Position of balance point with Y in the
l2 − l1
(cm)

Y = X−ρ(l2−l1)
(Ω)

right gap, l1 (cm) left gap, l2 (cm)
direct

current
reverse
current

mean
l1

direct
current

reverse
current

mean
l2

1 0.1
2 0.2
3 0.3
...

8 . . .
...

Calculations:

1. Calculate the value of (l2 − l1) for each value of X in Table 1.

2. Calculate ρ of the bride wire for each value of X in Table 1 using Eq. (7).

3. Calculate the mean ρ from the values obtained in Table 1 for different X.

4. Using this mean value of ρ in Eq. (6), calculate the unknown resistance Y for each row in
Table 2.

5. Use these results to calculate the mean value of Y .

Result:

Resistance per unit length of bridge wire, ρ = · · ·
Value of the unknown low resistance, Y = · · ·

Remark:

—
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Experiment 7

Determination of Young’s modulus of elasticity

Objective

To determine the Young’s modulus of elasticity of the material of a sample beam by bending.

Apparatus

Sample beam supported at its two ends and loaded at the middle, a stand, weights, weight
holder, spherometer etc.

Theory

Elasticity is the property of materials by virtue of which it tend to resist a deforming force
and recover from a change of size or shape of the body on removal of the deforming force.
When the deforming force is applied to a body in such a manner that its length is changed,
then a longitudinal strain is produced in the body. Due to the elastic property, an internal
restoring force is produced along the length of the body which opposes the deforming force.
The magnitude of this force per unit cross-sectional area is called the normal stress. If the body
is of length L and have uniform cross-sectional area A, and if a force F acting along the length
of the body changes the length by l, then

Longitudinal strain =
l
L
, Normal stress =

F
A

(1)

The Young’s modulus of elasticity of the material of the body is defined as,

Y =
Normal stress

Longitudinal strain
(Newton/m2) (2)

Now consider a material in the form of a rectangular beam supported horizontally by two
knife edges at its two ends (Fig. 1). Let L be the length of the beam between the two points of
contacts with the knife edges, ‘b’ be its breadth and ‘d’ be its depth. Let the beam be loaded at

L

δ

Fig. 1: Beam supported at its two ends and loaded at the middle.
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Experiment 7: Young’s modulus of elasticity of a beam by bending

the middle point by a weightW =Mg, whereM is the mass of the load and g is the acceleration
due to gravity. The load produces a downward bending in the beam (Fig. 1). Let δ be the
depression, i.e. downward displacement from the original position of the middle point of the
beam. Then it can be shown that the Young’s modulus of elasticity of the material of the beam
is,

Y =
MgL3

4bd3δ
(3)

From the above equation we can write,

δ =
MgL3

4bd3Y
(4)

Now if δ1 and δ2 are the depressions corresponding to loads M1 and M2 respectively, then

δ2 − δ1 =
gL3

4bd3Y
(M2 −M1)

Or, Y =
gL3

4bd3
∆M
∆δ

(5)

where ∆δ = δ2 − δ1 and ∆M = M2 −M1. Therefore, given a beam with arrangements as shown
in Fig. 1, the Young’s modulus of elasticity Y can be determined by measuring δ as a function
of M and using any of the Eq. (3) or Eq. (5).

Experimental setup

The experimental setup consists of a stand which can support the sample beam horizontally
at its two ends (Fig. 2). The beam can be loaded at the middle by means of a weight holder. A
spherometer mounted on a separate stand is used to measure the depression of the beam. The
spherometer is connected with buzzer indicator which turns on when the tip of the spherome-
ter leg touches the beam. There are three different sample beams with specifications as follows.

Fig. 2: Experimental setup for Young’s modulus measurement

Sample beam specifications:

Sample beam Material
Length
(in cm)

Breadth
(in cm)

Depth
(in cm)

1 Iron 100 2.5 0.6
2 Brass 100 2.6 0.5
3 Aluminum 100 2.55 0.5
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Procedure

1. Make sure that the sample beam placed horizontally on the stand is tightened to the
stand properly.

2. Tighten the weight holder at the center of sample with the help of screw. The weight
holder is free of any load at this point.

3. Place the spherometer stand near the center of sample.

4. Adjust the spherometer screw such that its main scale reading is nearly zero.

5. Adjust the height of the spherometer in its stand such that the spherometer leg just
touches the top surface at the middle of the beam.

6. Once the adjustments have been done, turn the spherometer screw a little upward such
that its leg now loses contact with the beam

7. Switch on power to the buzzer.

8. Now rotate the spherometer screw downward slowly and carefully such that the tip of
its leg just touches the beam. At this point the buzzer circuit becomes complete and the
buzzer begins to blow.

9. As soon as the buzzer begins to blow, stop rotating the spherometer screw and switch off
power to the buzzer.

10. Note down the spherometer main scale reading,m and circular scale reading, s. The total
reading is ‘m+s×L.C.’, where L.C. is the least count of the spherometer (see Table 1). Call
this reading under no load condition as y0.

11. Now place a 500 gm weight on the weight holder with a T-pin at the bottom. At this
stage, the spherometer leg loses contact with the sample beam.

12. Switch on power to the buzzer.

13. Rotate the spherometer screw downward slowly and carefully again, until the buzzer be-
gins to blow. As soon as the buzzer begins to blow, stop rotating the spherometer screw
and switch off power to the buzzer.

14. Note down the spherometer readings again and evaluate the total y1.

15. Calculate the depression, δ1 = y1 − y0 for the given load M = 500 gm and tabulate the
value as shown in Table 1.

16. Place more 500 gm weights one by one for total weight up to 2.0 Kg. In each case, deter-
mine the depression δn produced as indicated in steps 12-16.

17. Steps 7-16 above give the depression δn of the beam as a function of loadM for increasing
load. Now determine δn for the same values of M, but this time with decreasing load as
follows.

18. With the previous total load still on the weight holder, rotate the spherometer screw
upward so that there is sufficient gap between the tip of the spherometer leg and the
beam. At the point, the buzzer is in switched off condition.

31



Experiment 7: Young’s modulus of elasticity of a beam by bending

19. Switch on power to the buzzer.

20. Remove one 500 gm load from the holder. The middle point of the beam moves upward.

21. Rotate the spherometer screw downward slowly and carefully, until the buzzer begins
to blow. As soon as the buzzer begins to blow, stop rotating the spherometer screw and
switch off power to the buzzer.

22. Determine the total reading y′n for the n-th value of load M and determine the corre-
sponding depression δn.

23. Keep removing more loads one by one until there is no more load and in each case deter-
mine y′n and hence the corresponding depression δn for the load M present in the holder
by following the same procedure as indicated in steps 18-22.

24. Calculate the mean depression δn for each load M from the values obtained for load
increasing and load decreasing readings.

25. Insert the values mean depressions δn and the corresponding loads M obtained above in
Table 2.

26. Find the difference in depression∆δ for a particular constant weight difference, say∆M =
0.5 Kg as indicated in Table 2.

27. Calculate mean ∆δ from the values obtained in step 26.

28. Calculate Young’s modulus of elasticity, Y by using these values of ∆δ and ∆M in Eq. (5).

Observations

From the supplied technical specifications for the sample beam,

Material of the sample beam = · · ·

Length, L = · · ·

Breadth, b = · · ·

Depth, d = · · ·

Least count of the spherometer is, L.C. = . . . mm.

Abbreviations used:

MSR = Main scale reading, CSR = Circular scale reading
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Table 1: Determination of depression δ of the beam a function of load M.

Sl
No.,

n

Load
M

(in Kg)

Spherometer readings and depression of the beam for
Mean
δn

(×10−3 m)

load increasing load decreasing

MSR
m

(mm)

CSR
s

Total
yn =m+
s ×L.C.
(mm)

δn =
(yn−y0)
(mm)

MSR
m

(mm)

CSR
s

Total
y′n =m+
s ×L.C.
(mm)

δn =
(y′n−y′0)
(mm)

0 0.0
1 0.5
2 1.0
3 1.5
4 2.0

Table 2: Determination of ∆δ for a constant load difference ∆M

Sl
No.

Load M
(in Kg)

Depression
δn

(in mm)

Constant
load difference
∆M (in Kg)

∆δ
(in mm)

Mean ∆δ
(in mm)

Mean ∆δ
(in m)

0 0.0 δ0 = 0.0

0.5

—

1 0.5 δ1 = . . . δ1 − δ0 = . . .
2 1.0 δ2 = . . . δ2 − δ1 = . . .
3 1.5 δ3 = . . . δ3 − δ2 = . . .
4 2.0 δ4 = . . . δ4 − δ3 = . . .

Calculation:

Calculate Y using Eq. (5) by taking the values of ∆δ and ∆M from Table 2.

Result:

Young’s modulus of elasticity of ‘material name’ is, Y = . . . Nm−2.

Remark:

—
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Experiment 8

Newton’s ring experiment

Objective

To determine the wavelength of sodium light by measuring the diameters of Newton’s rings.

Apparatus

Newton’s ring assembly, microscope with horizontal measurement, sodium vapor lamp etc.

Theory

Newton’s ring experiment involves producing an interference pattern of a light beam by getting
it reflected from the two surfaces of a circular thin film whose thickness varies radially from a
central point. The schematics of the arrangement is shown in Fig. 1. It consists of plano-convex
lens (L) placed on top a plane glass plate (P). The lower surface of the lens and the upper
surface of the glass plate encloses an air film whose thickness increases radially from the point
of contact (C) of these two surfaces. A parallel beam of light from the source falls on another

P
C

L

G

r

Fig. 1: Newton’s ring experiment

r

d

R

R−d

n

Fig. 2: Radius of a Newton’s ring

glass plate (G) at an angle of 45◦. The plate reflects parts of the incident light towards the air
film between L and P. This beam gets reflected from the upper and lower surface of the air film
and produces an interference pattern which can observed from above by a microscope. Due
to the circular symmetry of the film thickness, the interference pattern consists of concentric
circular dark and bright fringes and are called Newton’s rings.

Now consider a ray of light incident nearly normally on the air film at a point at distance
‘r’ from the central point C. Let ‘d’ be the thickness of the film at this radial distance. The
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Experiment 8: Newton’s ring experiment

ray gets reflected partially from the top surface of the film without any phase change. Part of
the ray enters the air film and get reflected from the bottom surface with a phase change of π.
An additional phase difference occurs due to the optical path difference of 2µd between these
two components, where µ is the refractive index of the film. For air, µ = 1. The conditions for
destructive and constructive interference are therefore,

2d = nλ, n = 0,1,2, . . . (for minima) (1)

2d =
(
n+

1
2

)
λ, n = 0,1,2, . . . (for maxima) (2)

where λ is the wavelength of the light. The radius of the circular fringes can be obtained as
follows. Let rn be the radius of the n-th dark ring. From the construction of Fig. 2,

r2
n = R2 − (R− d)2 ≈ 2Rd (3)

where R is the radius of the spherical surface of the plano-convex lens. Since R� d, we have
neglected the d2 term from the above expression. From Eq. (1) and (3),

r2
n = nλR (4)

In experiments, it is easier to measure the diameter of a ring more accurately than to measure
the radius. Therefore we express the above relation in terms of diameter. If Dn is the diameter
of the n-th dark ring and Dn+p is that of the (n+ p)-th ring, then we get from Eq. (4),

λ =
D2
n+p −D2

n

4pR
(5)

Thus the wavelength, λ of the incident light can be determined by measuring the diameters of
the Newton’s ring formed.

Experimental setup

Fig. 3: Newton’s ring experimental setup Fig. 4: Newton’s ring microscope

The experimental setup (Fig. 3) consists of a Newton’s ring microscope (Fig. 4) which has
two parts. There is a traveling microscope to observe and measure the diameter of the Newton’s
rings. The other part is a detachable Newton’s ring assembly with a plano-convex lens on top
of a glass plate. Another glass plate reflects light from the source towards the lens. There is a
sodium vapor lamp which acts as a source of monochromatic light.

36



Procedure

1. Position the Newton’s ring microscope and the sodium vapor lamb enclosure such that
the enclosure opening directly faces the inclined glass plate (G in Fig. 1). The plate should
be inclined at 45◦ with horizontal.

2. Connect the ‘Power supply for Na Lamp’ to the mains. Then connect the cord of the light
source box to the ‘Power supply for Na Lamp’. Then switch on the power supply.

3. Wait for some time till the lamp glow bright yellowish.

4. Determine the least count of the traveling microscope. The least count is the pitch of the
screw divided by the number of circular scale divisions.

5. Adjust the microscope position follows. There are two knobs (2 & 4 in Fig. 4) provided in
one side of the microscope for coarse lateral and coarse vertical movement of the micro-
scope frame. Use these two knobs to bring the microscope frame on top of the Newton’s
ring lens.

6. There is another knob (1 in Fig. 4) in the other side of the microscope for finer vertical
movement of the microscope tube. Use this finer knob to move the microscope tube to
and fro vertically in order to have a clear view of the Newton’s rings. Try to obtain a good
contrast between the bright and dark circular fringes.

7. Bring the cross-wire of the microscope on top of the central dark fringe with the help of
the traveling microscope screw knob (1 in Fig. 4).

8. Slide the cross-wire to the left till the cross-wire line which is perperndicular to the left-
right direction, lies tangentially at the 20-th dark ring. Note down the main and circular
scale readings (see Table 1).

9. Now slowly slide the microscope to the right and note down the readings when the cross-
wire line lies tangentially at the 16-th, 12-th, 8-th and 4-th dark ring respectively.

10. Keep sliding the microscope to the right and again note down the readings when the
vertical cross-wire lies tangentially at the 4-th, 8-th, 12-th, 16-th and 20-th dark ring
respectively.

11. Calculate the diameter, Dn of each ring from the difference of the right side and left side
readings for a particular (n-th) ring.

12. Calculate the difference D2
n+p −D2

n for two rings with p = 4. The value of n will be n =
4,8,12,16.

13. Calculate the wavelength, λ using Eq. (5) for the pairs of rings considered above. Finally
calculate the mean wavelength.

Observations

Radius of curvature of the convex surface of the plano-convex lens, R = 200 cm
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Experiment 8: Newton’s ring experiment

Least count of the traveling microscope screw, L.C. = . . . cm.

Abbreviations used:

MSR = Main scale reading, CSR = Circular scale reading

Table 1: Determination of wavelength, λ from Newton’s ring experiment.

Ring
No.,

n

Microscope readings with the cross-wire
Diameter
of the ring
Dn =
bn − an
(cm)

D2
n+p−D2

n
for p = 4

(cm2)

λ =
D2
n+p−D2

n

4pR

(in Å)

Mean
λ

(Å)

on the left of center on the right of center

MSR
m

(cm)

CSR
s

Total
an =m+
s ×L.C.

(cm)

MSR
m

(cm)

CSR
s

Total
bn =m+
s ×L.C.

(cm)
4
8

12
16
20 —

Calculation:

Calculate λ considering the different pairs of rings in Table 1 and find the mean λ.

Result:

Wavelength of sodium light is, λ = . . . Å.

Remark:

—
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Experiment 9

Diffraction grating experiment

Objective

To determine the wavelength of laser using Diffraction grating.

Apparatus

Diffraction grating, laser light source, viewing screen, optical bench, stands etc.

Theory

A diffraction grating is a transparent plate ruled with a very large number of closely spaced
parallel opaque grooves. In principle, a grating can be thought of as a set of large number of
identical equally spaced thin slits separated by opaque strips. Light passing through a grating
produces a diffraction pattern on a screen which can be analyzed to find the positions of bright
and dark regions. Consider a plane wavefront incident on a grating surface. Portions of the

d
θ

Path diff. between two adjascent rays

Fig. 1: Path difference in diffraction grating

wavefront falling on the slits will be transmitted through the grating. Now each point on
a wavefront falling on a slit will act as a source of secondary wavefront. Rays coming out
from these points interfere with each other producing a diffraction pattern on a viewing screen
placed behind the grating. Moreover, beams coming from different slits also interfere with each
other producing a net intensity distribution of light which is resultant of both the diffraction
effect due each single slit and interference effect due to all theN slits. Now consider a setting in
which the viewing screen is placed at ‘large distance’ from the grating (Fraunhoffer diffraction
class) so that the interfering rays can be considered almost parallel (Fig. 1). Consider parallel
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Experiment 9: Diffraction grating experiment

rays emerging at an angle θ with the horizontal line from identical points in each slit as shown
in Fig. 1. The path difference between two such adjacent rays will be ‘d sinθ’, where d is the
distance between two slits. It can shown that the intensity of the resultant wave obtained as
a result of superposition of all such rays (emerging from all points from all slit wavefronts) is
given by,

I = I0
sin2β

β2

sin2Nγ

sin2γ
(1)

where I0 is a constant. β and γ are given by

β =
πb sinθ
λ

, γ =
πd sinθ

λ
(2)

where b is the slit width and λ is the wavelength of light used. Thus the intensity, I will vary
as a function of angle θ. For very large N , points of highest intensity, called principal maxima
will be obtained when γ =mπ, that is when,

πd sinθm =mλ, m = 0,±1,±2, . . . (principal maxima) (3)

The maxima for m = 0,±1,±2 . . . are called zeroth order, first order, second order maxima and
so on, respectively. If ym is the distance of the m-th principal maxima from the central maxi-
mum, and D (� ym) is the distance between the grating and the screen, then the corresponding
diffraction angle can be estimated using,

θm =
ym
D

(radian) (4)

In addition to the above principal maxima, there will be a number of minima and secondary
maxima between two such principal maxima. Thus we can determine the wavelength, λ of
the incident light from Eq. (3) by measuring the diffraction angle of various order principal
maxima obtained.

Experimental setup

Fig. 2: Diffraction grating experimental setup

The experimental setup (Fig. 2) consists of an optics bench, mounted on which are a laser
source, a diffraction grating and a viewing screen with two measuring scales engraved perpen-
dicularly on it.
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Procedure

1. Mount the laser source on the sliding stand at 0cm mark of the optics bench.

2. Place the grating mounted on a stand at a suitable distance from the source so that laser
light falls normally on it.

3. Place the viewing screen mounted on another stand at the other end of the bench. The
screen should also face the laser source normally.

4. Adjust the heights of all the three elements so that they are aligned at a same height.

5. Switch on the laser source. See that the laser light falls on the transparent portion of the
grating.

6. Adjust the distance between the diffraction grating and the screen so that the light beam
after passing through grating produces several bright spots on the screen.

7. Adjust the position of Laser so that the diffraction spots fall along the scale of screen.

8. Adjust the position of screen and the grating so that the diffraction spots are sharp and
bright.

9. The brightest spot at the mid point is the central maxima and symmetrically situated on
both sides of the central maxima there are multiple spots of diminishing intensity.

10. The first bright spot on either side of the central maxima is the first order maxima. Mea-
sure the distance between the center of central maxima and center of first bright spot on
the screen (Table 1).

11. The second bright spot on either side of the central maxima is the second order maxima.
Measure the distance between the center of central maxima and center of second bright
spot on the screen.

12. Repeat the same procedure for 3rd and 4th order maxima.

13. Calculate the distance between two slits, d from the number of lines per cm (N0) of the
diffraction grating.

14. Note down the distance, D between grating and screen.

15. Calculate the diffraction angle θm of the m-th principal maximum using Eq. (4).

16. Calculate λ using Eq. (3) for each order of maxima considered above and find the mean
value.

Observations

Number of lines of the diffraction grating per cm, N0 = 3000.

Distance between two grating slits, d = 1
N0

= . . . cm.

Distance between the grating and the screen, D = . . . cm.
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Experiment 9: Diffraction grating experiment

Table 1: Determination of wavelength, λ using diffraction grating.

Sl
No.

Order
of the

maxima
(m)

Distance of the m-th
maximum from

center
Diffraction

angle,
θm =
ym/D

(rad)

sinθm
Wavelength,

λ =
πd sinθm

m

(cm)

Mean
λ

(in Å)

on the left
of center
y′m (cm)

on the right
of center
y′′m (cm)

Mean,
ym =

(y′m+y′′m)/2
(cm)

1 1
2 2
3 3
4 4

Calculation:

Calculate λ considering the different m in Table 1 and find the mean λ.

Result:

Wavelength of the used laser light is, λ = . . . Å.

Remark:

—
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